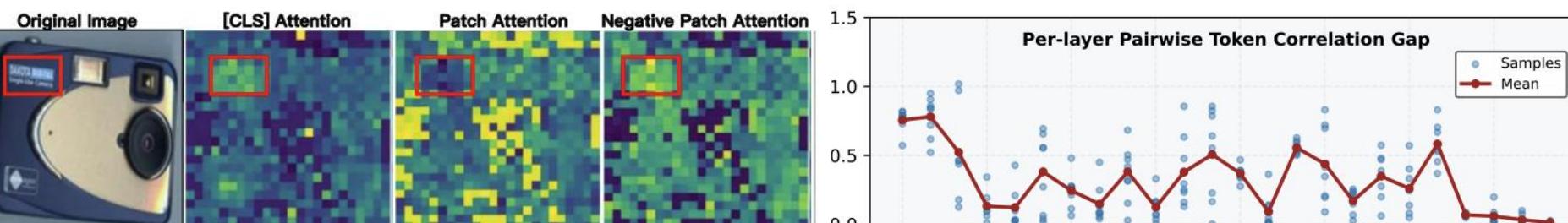
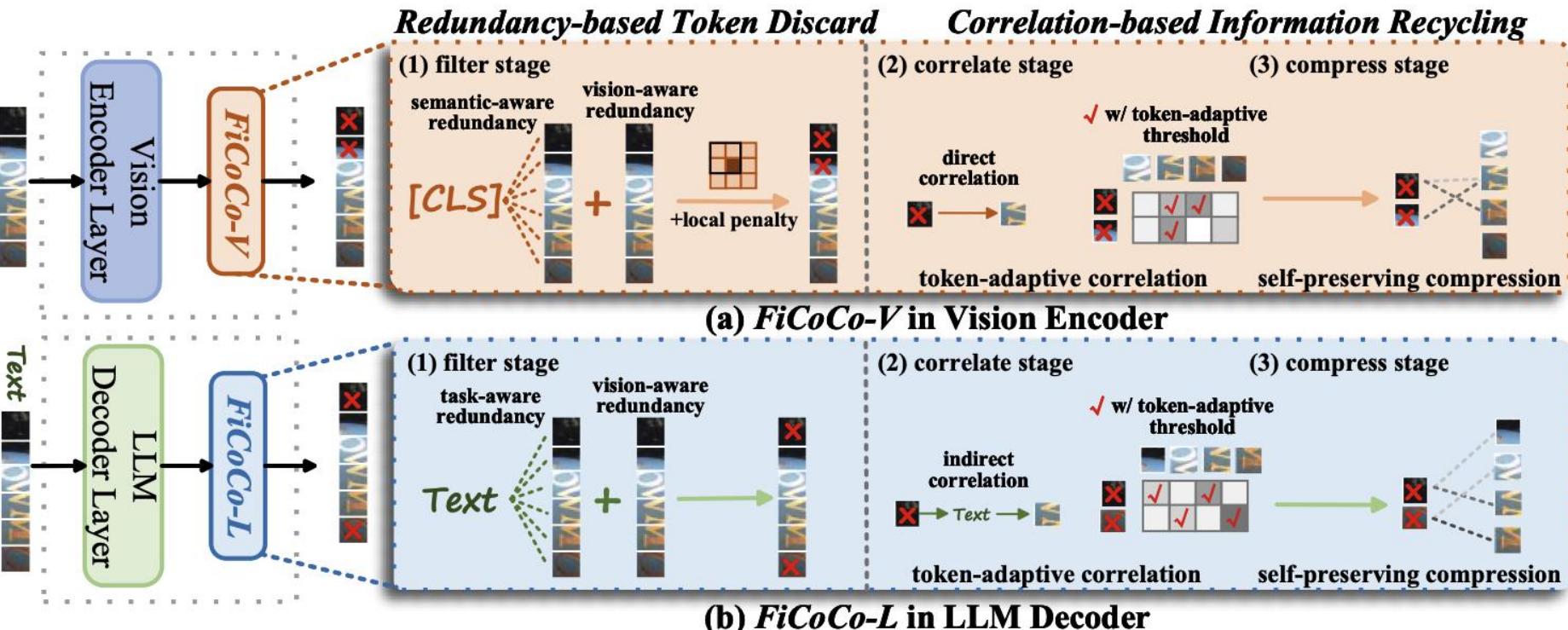


Yuhang Han^{1*}, Xuyang Liu^{2*}, Zihan Zhang³, Pengxiang Ding¹, Junjie Chen²,
Donglin Wang¹, Honggang Chen², Qingsen Yang^{4,5}, Siteng Huang^{6†}

¹ WU ² SCU ³ JHU ⁴ NPU ⁵ SRI-NPU ⁶ ZJU


*Equal contribution. † Corresponding author: siteng.huang@gmail.com


Motivation and Research Status

Current methods face **three critical issues**:

- Redundancy Myopia:** Single-metric redundancy modeling, limiting token importance estimation.
- Coarse Token Retention:** Direct pruning or one-to-one merging of redundant tokens, losing fine-grained information.
- Entangled Compression Pipeline:** Tight coupling of redundancy estimation and compression, limiting interpretable information flow.

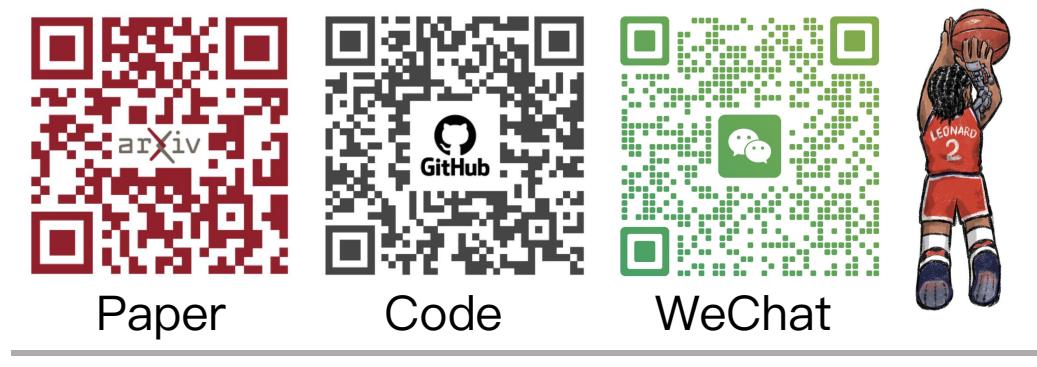
Our Solution: FiCoCo

Different stages are designed to address different problems:

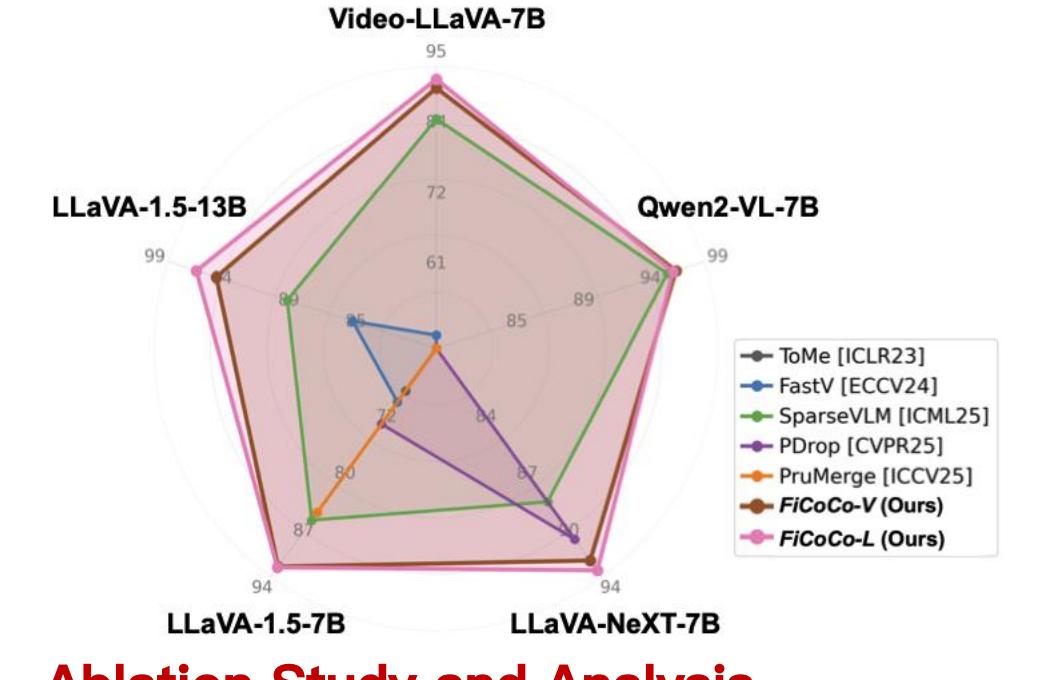
- Filter stage:** What token should be discarded?
- Correlate stage:** Where should discarded information be recycled?
- Compress stage:** How to effectively recycle information?

Performance and Efficiency on LLaVA-1.5 7B/13B

- Strong Performance:** 82.4%/47.6% TFLOPs reduction while retaining ≥92%/95% performance (7B/13B).


Method	Source	TFLOPs↓	SQA	VQA ^T	POPE	GQA	MMB	VQAv2	Avg	Avg(%)
LLaVA-1.5-7B	NeurIPS23	8.5	69.5	58.2	86.4	62.5	66.1	79.1	70.3	100
				TFLOPs=8.5						
ToMe	ICLR23	3.3	65.2	52.1	72.4	54.3	60.5	68.0	62.1	88.3
FastV	ECCV24	3.3	67.3	52.5	64.8	52.7	61.2	67.1	60.9	86.6
SparseVLM	ICML25	3.3	69.1	56.1	83.6	57.6	62.5	75.6	67.4	95.9
PDrop	CVPR25	3.3	68.8	56.1	82.3	57.1	63.2	75.1	67.1	95.4
PruMerge	ICCV25	3.3	67.9	54.3	71.3	54.3	59.6	70.6	63.0	89.6
FiCoCo-V	Ours	3.3	67.8	55.7	82.5	58.5	62.3	74.4	66.9	95.2
FiCoCo-L	Ours	3.3	69.6	56.6	84.6	61.1	64.6	76.8	68.9	98.0
				TFLOPs=3.3 (↓61.2%)						
ToMe	ICLR23	2.5	59.6	49.1	62.8	52.4	53.3	63.0	56.7	80.7
FastV	ECCV24	2.5	60.2	50.6	59.6	49.6	56.1	61.8	56.3	80.1
SparseVLM	ICML25	2.5	67.1	54.9	80.5	56.0	60.0	73.8	65.4	93.0
PDrop	CVPR25	2.5	68.3	55.1	82.3	56.0	61.1	72.9	65.9	93.8
PruMerge	ICCV25	2.5	67.1	54.3	67.2	53.3	58.1	68.8	61.5	87.5
FiCoCo-V	Ours	2.4	68.3	55.6	82.2	57.6	61.1	73.1	66.3	94.3
FiCoCo-L	Ours	2.4	69.4	56.3	84.4	60.6	61.9	73.4	67.7	96.3
				TFLOPs=2.4 (↓71.8%)						
ToMe	ICLR23	1.6	50.0	45.3	52.5	48.6	43.7	57.1	49.5	70.4
FastV	ECCV24	1.6	51.1	47.8	48.0	46.1	48.0	61.8	50.5	71.8
SparseVLM	ICML25	1.5	62.2	51.8	75.1	52.4	56.2	68.2	61.0	86.8
PDrop	CVPR25	1.6	68.6	45.9	55.9	41.9	33.3	69.2	52.5	74.6
PruMerge	ICCV25	1.5	68.1	54.0	65.3	51.9	55.3	67.4	60.3	85.8
FiCoCo-V	Ours	1.5	68.4	55.5	79.8	54.9	60.2	72.1	65.2	92.7
FiCoCo-L	Ours	1.5	69.5	55.7	82.1	53.2	61.5	69.7	65.3	92.8
				TFLOPs=1.5 (↓82.4%)						
LLaVA-1.5-13B	NeurIPS23	24.9	71.4	61.3	86.2	63.4	68.0	80.0	71.7	100
				TFLOPs=24.9						
FastV	ECCV24	15.4	57.0	56.0	79.3	57.7	57.9	-	61.6	85.9
SparseVLM	ICML25	15.4	69.9	49.9	81.1	57.9	65.8	-	64.9	90.5
FiCoCo-V	Ours	15.4	72.1	57.2	82.3	59.2	63.1	76.8	68.5	95.5
FiCoCo-L	Ours	15.4	72.4	58.3	83.1	60.1	65.2	77.6	69.5	96.9
				TFLOPs=15.4 (↓47.6%)						

Efficiency on LLaVA-1.5 7B/13B


- High Efficiency:** TFLOPs, memory footprint, and KV-cache size are all significantly reduced.

Method	Quant	TFLOPs↓	Memory (GB)↓	KV-Cache (MB)↓
LLaVA-1.5	FP16	8.5	22.4	333
FiCoCo-V	FP16	1.5 (↓82%)	14.4 (↓36%)	65.0 (↓80%)
FiCoCo-L	FP16	1.5 (↓82%)	14.3 (↓36%)	64.2 (↓81%)
LLaVA-1.5	INT8	4.3	11.2	167
FiCoCo-V	INT8	0.8 (↓81%)	7.8 (↓30%)	32.5 (↓81%)
FiCoCo-L	INT8	0.8 (↓81%)	7.2 (↓36%)	32.1 (↓81%)
LLaVA-1.5	INT4	2.1	6.2	83.4
FiCoCo-V	INT4	0.4 (↓81%)	4.4 (↓29%)	16.3 (↓81%)
FiCoCo-L	INT4	0.4 (↓81%)	3.3 (↓47%)	16.1 (↓81%)

Method	Quant	TFLOPs↓	Memory (GB)↓	KV-Cache (MB)↓
LLaVA-1.5	FP16	28.6	56.1	891
FiCoCo-V	FP16	15.4 (↓46%)	38.6 (↓31%)	488 (↓43%)
FiCoCo-L	FP16	15.4 (↓46%)	38.4 (↓32%)	485 (↓46%)
LLaVA-1.5	INT8	14.3	28	446
FiCoCo-V	INT8	7.7 (↓46%)	19.3 (↓31%)	244 (↓45%)
FiCoCo-L	INT8	7.7 (↓46%)	19.2 (↓31%)	242 (↓46%)
LLaVA-1.5	INT4	7.6	14	223
FiCoCo-V	INT4	3.9 (↓46%)	9.6 (↓32%)	122 (↓49%)
FiCoCo-L	INT4	3.9 (↓49%)	9.5 (↓32%)	121 (↓46%)

Comparison to existing methods

Ablation Study and Analysis

Stage	Method	SQA	TextVQA
	FiCoCo-V	68.37	55.46
Filter	w/o vision-aware redundancy	67.81	52.51
	w/o semantic-aware redundancy	64.67	48.74
	w/o local penalty	68.12	53.24
Correlate	fixed K=0	67.82	53.56
	fixed K=1	67.43	46.97
	fixed K=2	67.21	51.36
	convergent correlation	67.60	54.38