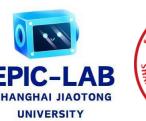


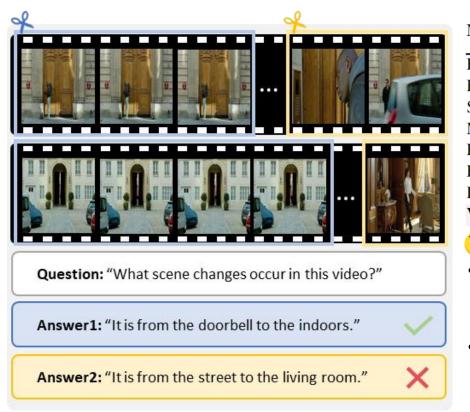
Video Compression Commander: Plug-and-Play Inference


Acceleration for Video Large Language Models

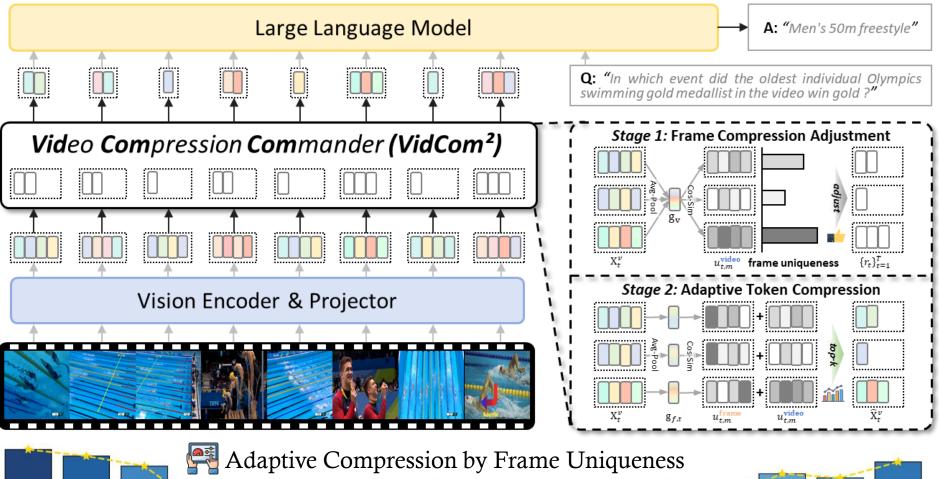
Xuyang Liu^{1,2*}, Yiyu Wang^{1*}, Junpeng Ma³, Linfeng Zhang^{1⊠}

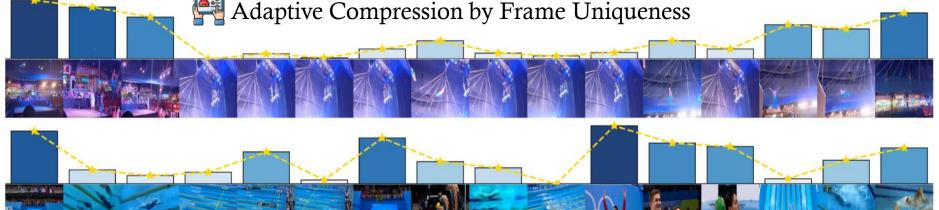
¹EPIC Lab, Shanghai Jiao Tong University, ²Sichuan University, ³Fudan University

*Equal contribution. [™] Corresponding author: zhanglinfeng@sjtu.edu.cn



Motivation and Research Status

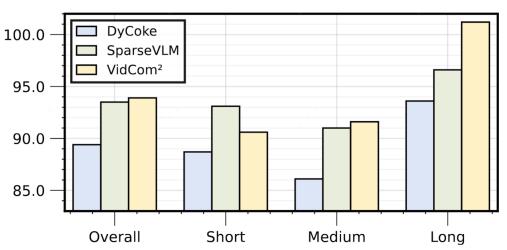



Methods		Intra- LLM D	[CLS] ependenc		Frame Uniquenes	Efficient ss Attention
FastV		✓				_
PDrop		✓				
SparseVLM	[✓				
MUSTDrop	/	✓	✓			
FiCoCo	✓	✓	✓			
FasterVLM	✓		✓			✓
DyCoke	1			✓		✓
VidCom ²	1			✓	✓	✓

- 🔯 Current methods face two critical issues:
- Design frame Myopia: ignoring each uniqueness, leading to over-compression of distinctive video information.
- Implementation Constraints: limited to the specific model architectures or incompatible with Flash Attention.

Takeaway: We derive three key principles for effective token compression of VideoLLMs: (i) model adaptability, (ii) frame uniqueness, and (iii) operator compatibility.

Our Solution: Video Compression Commander (VidCom²)


Performance and Efficiency on LLaVA-OneVision

- Strong Performance: Uses only 25% of tokens while maintaining 99.6%.
- W High Efficiency: Cuts generation time by 70.8% and overall latency by 43.0%.

M-41-1-	N4X/D	I X7: 1 D1	MIXII		VideoMME			A (PI	
Methods	MVBench	LongVideoBench	MLVU	Overall	Short	Medium	Long	Average (%)	
Upper Bound									
LLaVA-OV-7B	56.9	56.4	63.0	58.6	70.3	56.6	48.8	100.0	
Retention Ratio=30%									
DyCoke[CVPR'25]	56.6	54.7	60.3	56.1	67.1	54.6	46.6	96.5	
Retention Ratio=25%									
Random	54.2	52.7	59.7	55.6	65.4	53.0	48.3	94.8	
FastV [ECCV'24]	55.5	53.3	59.6	55.3	65.0	53.8	47.0	94.9	
PDrop[CVPR'25]	55.3	51.3	57.1	55.5	64.7	53.1	48.7	94.1	
SparseVLM[ICML'25]	56.4	53.9	60.7	57.3	68.4	55.2	48.1	97.5	
DyCoke[CVPR'25]	49.5	48.1	55.8	51.0	61.1	48.6	43.2	87.0	
VidCom ²	57.2	54.9	62.5	58.6	69.8	56.4	49.4	99.6	
Retention Ratio=15%									
FastV [ECCV'24]	51.6	48.3	55.0	48.1	51.4	49.4	43.3	85.0	
PDrop[CVPR'25]	53.2	47.6	54.7	50.1	58.7	48.7	45.0	87.4	
SparseVLM[ICML'25]	52.9	49.7	57.4	53.4	61.0	52.1	47.0	91.2	
VidCom ²	54.3	52.0	58.9	56.2	65.8	54.8	48.1	95.1	

Methods	LLM Generation Latency (s)	Model Generation↓ Latency (s)	Total↓ Latency (min:sec	GPU Peak↓) Memory (GB)	Throughput↑ (samples/s)	Performance†
LLaVA-OV-7B	618.0	1008.4	26:03	17.7	0.64	56.9
Retention Ratio=25	5%					
Random	$178.2(\downarrow 71.2\%)$	$566.0(\downarrow 43.9\%)$	$18:44(\downarrow 28.1\%)$	$16.0(\downarrow 9.6\%)$	$0.89_{(1.39\times)}$	54.6(12.3)
FastV [ECCV'24]	260.9(\157.8%)	648.6(\135.7%)	20:07 (\pm22.8%)	24.7 (†39.5%)	0.83(1.30×)	55.5 (\1.4)
PDrop[CVPR'25]	$205.6(\downarrow 66.7\%)$	$592.6(\downarrow 41.2\%)$	$18:50(\downarrow 27.7\%)$	24.5 (†38.4%)	$0.88(1.38\times)$	55.3 (\1.6)
SparseVLM[ICML'25	$410.6(\downarrow 33.6\%)$	807.7(\19.9%)	25:03 (\13.8%)	27.1 (†53.1%)	0.67 (1.05×)	$56.4(\downarrow 0.5)$
DyCoke[CVPR'25]	$205.2(\downarrow 66.8\%)$	598.0 (\downarrow 40.7%)	$18:56(\downarrow 27.4\%)$	$16.1(\downarrow 9.0\%)$	$0.88(1.38\times)$	49.5(17.4)
VidCom ²	$180.7(\downarrow 70.8\%)$	574.7 (\pm43.0%)	18:46(128.0%)	16.0(19.6%)	$0.88_{(1.38\times)}$	57.2 (↑0.3)

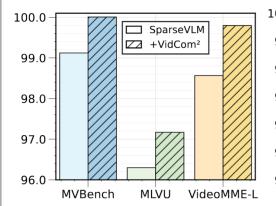
Performance on Qwen2-VL

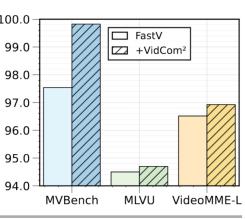
More Comparisons

Methods	EgoSchema	PerceptionTest
Upper Bound		
LLaVA-OV-7B	60.4 (100%)	57.1 (100%)
Retention Ratio=2	25%	
FastV [ECCV'24]	57.5 (95.2%)	55.4 (97.0%)
PDrop[CVPR'25]	58.0 (96.0%)	55.6 (97.4%)
DyCoke[CVPR'25]	59.5 (98.5%)	56.4 (98.8%)
VidCom ²	59.7 (98.8%)	56.7 (99.3%)

Ablation Study and Analysis

Metrics	MLVU	Overall	Video Short	MME Medium	Long	Avg.
Vanilla	63.0	58.6	70.3	56.6	48.8	100.0
$s_{t,m}^{ m frame}$	59.5	54.0	62.2	54.2	45.3	94.1
$-s_{t,m}^{\mathrm{frame}}$	61.9	57.9	68.8	56.9	48.1	98.8
$s_{t,m}^{\mathrm{video}}$	58.9	53.3	61.7	52.1	46.1	93.2
$-s_{t,m}^{\mathrm{video}}$	61.4	58.3	69.3	56.1	49.3	99.3
$u_{t,m}^{\text{frame}} + u_{t,m}^{\text{video}}$	62.1	58.5	69.6	56.3	49.3	99.7


Metrics	MLVU	Overall	Long	Avg.		
Vanilla	63.0	58.6	70.3	56.6	48.8	100.0
Uniform	61.9	57.9	68.8	56.9	48.1	98.8
Frame Con		Adjustme	ent			
$\max u_{t,m}^{\text{video}}$	62.1	58.1	68.4	56.7	49.3	99.4
$u_{t,m}^{\mathrm{video}}$	62.3	58.2	69.1	55.9	49.6	99.6


Size	MWDonoh		Ava			
Size	MVBench	Overall	Short	Medium	Long	Avg.
Vanilla	56.9	58.6	70.3	56.6	48.8	100.0
4	56.8	57.9	69.6	55.6	48.7	99.1
8	56.8	58.3	69.8	56.4	48.6	99.6
16	57.2	58.5	70.0	56.7	48.9	100.1
32	57.2	58.6	69.8	56.4	49.4	100.1

l	Metrics	MVBench	Overal	Video Short	MME Mediun	nLong Avg.
ı	Vanilla	56.9	58.6	70.3	56.6	48.8 100.0
ı	$u_{t,m}^{\mathrm{frame}}$	56.8	57.9	68.8	56.9	48.1 98.8
1	$u_{t,m}^{video}$	56.8	58.3	69.3	56.1	49.3 99.3
ı	Combination					
ı	$u_{t,m}^{\text{frame}} + u_{t,m}^{\text{video}}$	57.2	58.6	69.8	56.4	49.4 100.3
ı	$u_{t,m}^{\text{frame}} + 2u_{t,m}^{\text{video}}$	56.1	58.4	69.7	56.4	49.0 99.5
ı	$2u_{t,m}^{\text{frame}} + u_{t,m}^{\text{video}}$	56.9	58.6	69.7	56.8	49.3 100.0

Broader Applicability of VidCom²

Compatible with other methods: Plug-in boost for SparseVLM and FastV.

More Information

Paper WeChat Code