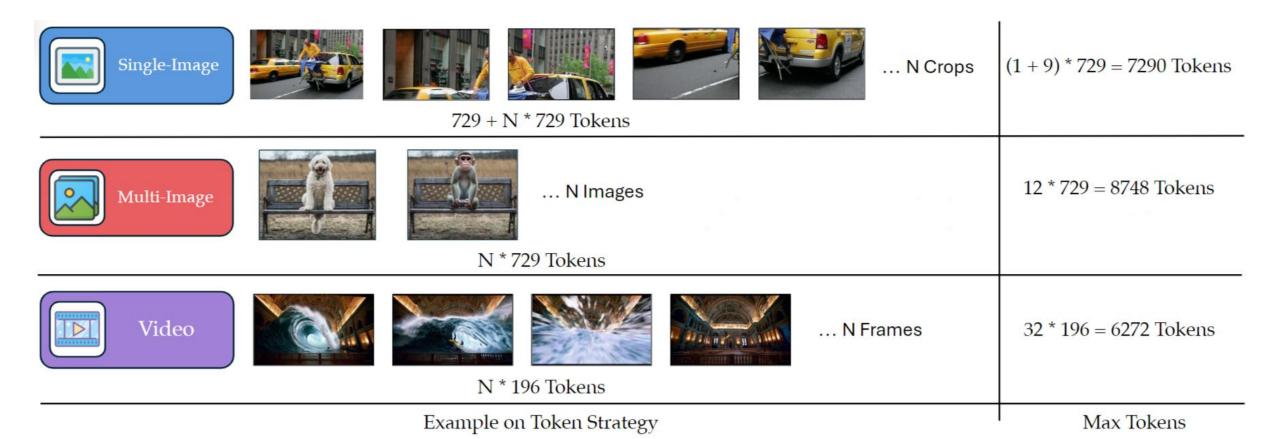


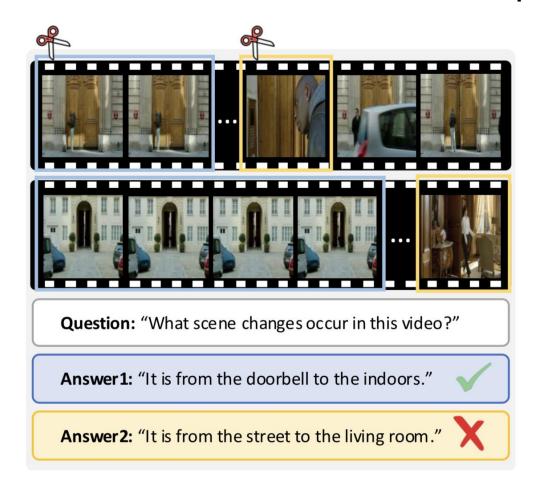
Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models


Xuyang Liu^{1,2*}, Yiyu Wang^{1*}, Junpeng Ma³, Linfeng Zhang^{1⊠}

¹EPIC Lab, Shanghai Jiao Tong University, ²Sichuan University, ³Fudan University

Paper: https://arxiv.org/pdf/2505.14454

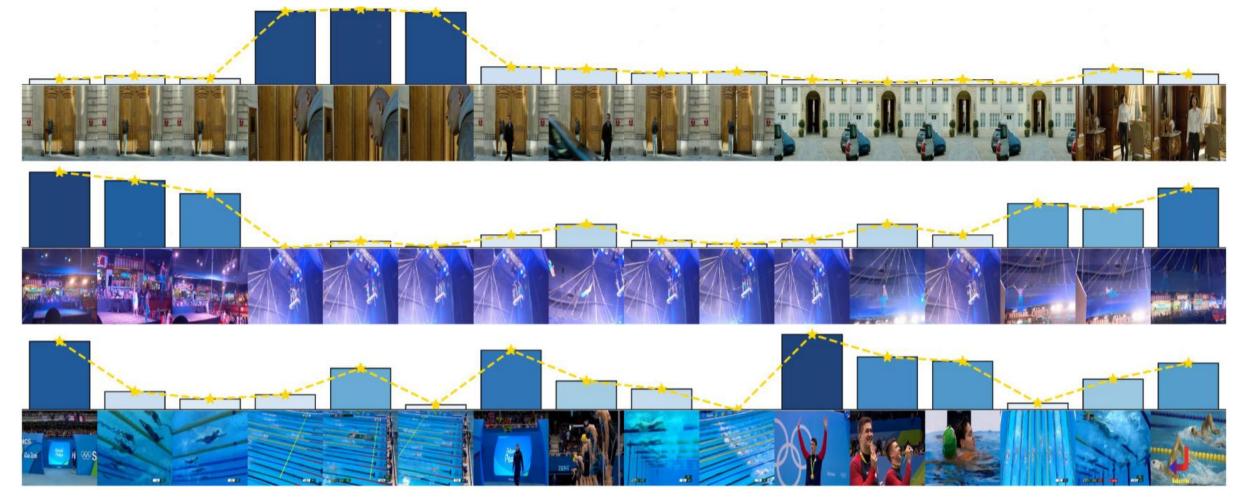
Code: https://github.com/xuyang-liu16/VidCom2


Research Background: Token Overhead in Visual Understanding

As model capabilities improve, the demand for high-resolution image and long-video understanding is growing, making the **token overhead issue increasingly pronounced** in visual understanding.

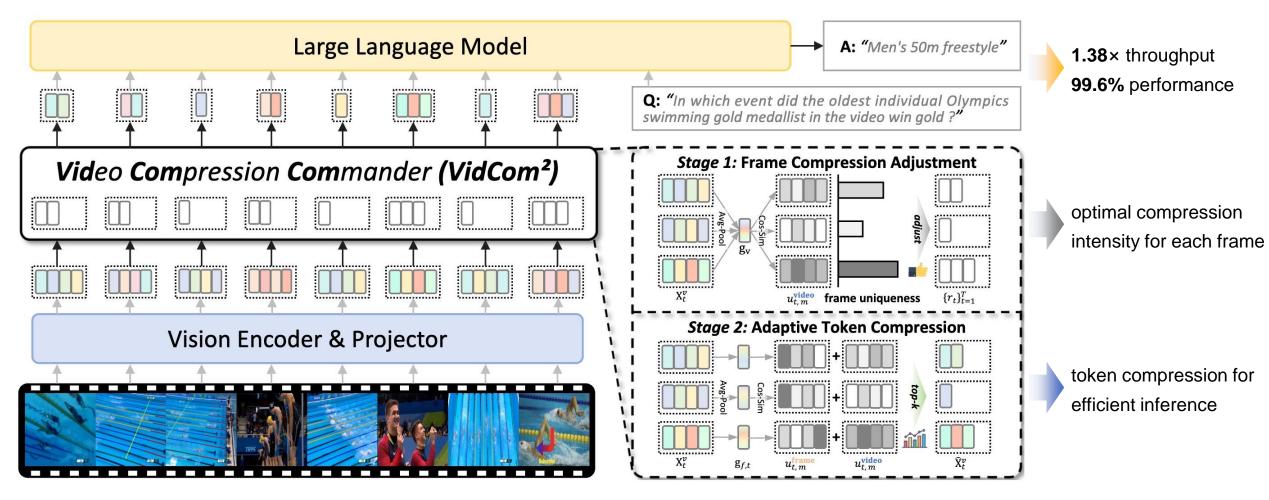
Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, YanweiLi, Ziwei Liu, and Chunyuan Li. 2024a. Llava-onevision: Easy visual task transfer. arXiv preprintarXiv:2408.03326.

Relevant Works: Token Compression for VideoLLMs


Methods	Pre-	Intra-	[CLS]	Video-	Frame	Efficient
Methous	LLM	LLMD	ependenc	cySpecific U	U niquenes	sAttention
FastV		✓				
PDrop		1				
SparseVLM	[1				
MUSTDrop	/	✓	✓			
FiCoCo	1	✓	✓			
FasterVLM	1		✓			✓
DyCoke	1			✓		✓
VidCom ²	1			✓	✓	✓

Current methods face *two critical issues* for VideoLLMs:

- **Design Myopia:** ignoring frame uniqueness, leading to over-compression of distinctive video information.
- Implementation Constraints: limited to the specific model architectures or incompatible with Flash Attention.


Takeaway: We derive *three key principles* for effective token compression of VideoLLMs: (i) model adaptability, (ii) frame uniqueness, and (iii) operator compatibility.

Key Highlights: Adaptive Compression by Frame Uniqueness

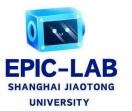
Core Argument: We suggest that visually distinctive frames throughout the video should retain more visual information, i.e., be allocated a larger visual token budget.

Our Solution: Video Compression Commander (VidCom²)

We present VidCom², a plug-and-play framework that dynamically compresses video tokens based on frame uniqueness, achieving state-of-the-art efficiency and performance across various VideoLLMs and benchmarks.

Experimental Results: State-of-The-Art Performance

Methods	MVBench	LongVideoBench	MLVU	Overall		OMME Medium	Long	Average (%)	Performance on VideoMME with Qwen2-VL	-
Upper Bound	•		0						-	
LLaVA-OV-7B	56.9	56.4	63.0	58.6	70.3	56.6	48.8	100.0		_
Retention Ratio=30%									100.0 DyCoke	
DyCoke[CVPR'25]	56.6	54.7	60.3	56.1	67.1	54.6	46.6	96.5	SparseVLM	
Retention Ratio=25%									VidCom ²	
Random	54.2	52.7	59.7	55.6	65.4	53.0	48.3	94.8	95.0	
FastV [ECCV'24]	55.5	53.3	59.6	55.3	65.0	53.8	47.0	94.9		
PDrop[CVPR'25]	55.3	51.3	57.1	55.5	64.7	53.1	48.7	94.1		
SparseVLM[ICML'25]	56.4	53.9	60.7	57.3	68.4	55.2	48.1	97.5		
DyCoke[CVPR'25]	49.5	48.1	55.8	51.0	61.1	48.6	43.2	87.0	90.0	
VidCom ²	57.2	54.9	62.5	58.6	69.8	56.4	49.4	99.6		
Retention Ratio=15%			0							
FastV [ECCV'24]	51.6	48.3	55.0	48.1	51.4	49.4	43.3	85.0	85.0	
PDrop[CVPR'25]	53.2	47.6	54.7	50.1	58.7	48.7	45.0	87.4		
SparseVLM[ICML'25]	52.9	49.7	57.4	53.4	61.0	52.1	47.0	91.2		•
VidCom ²	54.3	52.0	58.9	56.2	65.8	54.8	48.1	95.1	Overall Short Medium Long	į
Upper Bound										
LLaVA-Video-7B	60.4	59.6	70.3	64.3	77.2	62.1	53.4	100.0	Methods EgoSchema PerceptionTe	st
Retention Ratio=30%										
DyCoke[CVPR'25]	57.5	55.5	60.6	61.3	73.4	59.3	51.2	93.8	Upper Bound	
Retention Ratio=25%									LLaVA-OV-7B 60.4 (100%) 57.1 (100%))
FastV [ECCV'24]	53.8	51.2	57.8	59.3	67.1	60.0	50.8	89.7		
SparseVLM[ICML'25]	55.4	54.2	58.9	60.1	71.1	59.1	50.1	91.6	Retention Ratio=25%	
DyCoke[CVPR'25]	50.8	53.0	56.9	56.1	65.8	53.6	48.9	86.3	FastV _[ECCV'24] 57.5 (95.2%) 55.4 (97.0%))
VidCom ²	57.0	55.5	59.0	61.7	73.0	61.7	50.0	93.6		
Retention Ratio=15%										
FastV [ECCV'24]	44.0	44.6	53.8	51.3	56.4	51.1	46.2	78.0	DyCoke[CVPR'25] 59.5 (98.5%) 56.4 (98.8%))
SparseVLM[ICML'25]	53.1	52.7	56.2	55.7	65.0	53.9	48.3	86.3		_
VidCom ²	53.3	51.5	56.8	58.3	68.0	57.3	49.7	88.5	VidCom ² 59.7 (98.8%) 56.7 (99.3%))


VidCom² achieves state-of-the-art performance across models and benchmarks.

Experimental Results: State-of-The-Art Efficiency

Methods	LLM Generation Latency (s)	Model Generation↓ Latency (s)	. Total↓ Latency (min:sec	GPU Peak↓)Memory (GB)	Throughput() (samples/s)	 Performance†
LLaVA-OV-7B	618.0	1008.4	26:03	17.7	0.64	56.9
Retention Ratio=25	5%					
Random	$178.2(\downarrow 71.2\%)$	$566.0(\downarrow 43.9\%)$	$18:44(\downarrow 28.1\%)$	16.0(19.6%)	$0.89_{(1.39\times)}$	54.6(12.3)
FastV [ECCV'24]	260.9(\psi57.8%)	648.6(\\displays5.7%)	20:07 (\122.8%)	24.7 (†39.5%)	0.83(1.30×)	55.5 (\1.4)
PDrop[CVPR'25]	$205.6(\downarrow 66.7\%)$	$592.6(\downarrow 41.2\%)$	$18:50(\downarrow 27.7\%)$	24.5 (†38.4%)	0.88(1.38×)	55.3 (\1.6)
SparseVLM[ICML'25]	$410.6(\downarrow 33.6\%)$	$807.7(\downarrow 19.9\%)$	25:03 (\13.8%)	27.1 (↑53.1%)	0.67(1.05×)	$56.4(\downarrow 0.5)$
DyCoke[CVPR'25]	$205.2(\downarrow 66.8\%)$	$598.0(\downarrow 40.7\%)$	$18:56(\downarrow 27.4\%)$	$16.1(\downarrow 9.0\%)$	0.88(1.38×)	49.5(17.4)
VidCom ²	$180.7(\downarrow 70.8\%)$	$574.7(\downarrow 43.0\%)$	$18:46(\downarrow 28.0\%)$	16.0(19.6%)	$\textbf{0.88} (\textbf{1.38} \times)$	57.2 _(↑0.3)
Retention Ratio=15	5%					
Random	$130.3(\downarrow 78.9\%)$	532.5 (\.47.2%)	18:02(\pm30.8%)	$15.8(\downarrow 10.7\%)$	0.92(1.44×)	$53.1(\downarrow 3.8)$
FastV [ECCV'24]	172.4(\pm,72.1%)	599.3 (\40.6%)	18:19(\pmu29.7%)	24.6(†39.0%)	0.91 _(1.42×)	51.6(\psi.3)
PDrop[CVPR'25]	$165.3(\downarrow 73.3\%)$	$552.6(\downarrow 45.2\%)$	$18:32(\downarrow 28.9\%)$	24.5 (†38.4%)	0.90(1.41×)	$53.2(\downarrow 3.7)$
SparseVLM[ICML'25]	$370.4(\downarrow 40.1\%)$	$764.8(\downarrow 24.2\%)$	$24:09(\downarrow 7.3\%)$	27.1 (↑53.1%)	$0.69_{(1.08\times)}$	52.9(4.0)
VidCom ²	$129.2(\downarrow 79.1\%)$	533.0(\47.1%)	18:11(\pm30.2\%)	$15.8(\downarrow 10.7\%)$	0.92(1.44×)	54.3 (\$\dagger\$2.6)

VidCom² achieves outstanding efficiency with a 70.8% reduction in LLM generation latency and 1.38× higher throughput, while remaining compatible with efficient attention operators.

Thanks!

Q & A