

Shifting AI Efficiency From Model-Centric to Data-Centric Compression

Xuyang Liu

M.S.@SCU, RA@EPIC Lab

Talk@PolyU NLP, Jun. 10, 2025

Xuyang Liu, second-year M.S. at SCU, supervised by Prof. Honggang Chen. RA at EPIC Lab of SJTU, working with Prof. Linfeng Zhang.

- Interned Ant Security Lab / Taobao & Tmall Group.
- Work on efficient vision-language models (understanding and generation).
- Selected works: GlobalCom² for LVLMs, VidCom² for VideoLLMs, and ToCa for DiTs.

Outline of the Talk:

Given Service All Model Efficiency

- Motivation of shifting the efficiency research focus.
- Token overhead across various domains.
- Model efficiency from different perspectives.

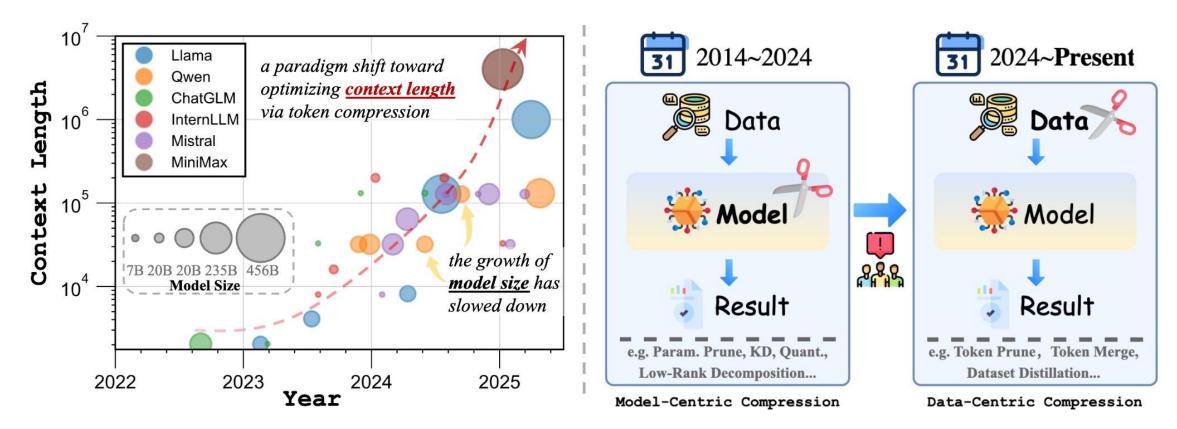
Methodology of Token Compression

- Two stage process of token compression.
- Detailed applications of token compression across domains.
- Five compiling advantages of token compression.

Challenges and Future Works

- Performance degradation by token compression.
- Fair comparison of token compression methods.

Motivation: model capabilities have shifted from scaling model size to extending context length.



Position: the AI community should shift its efficiency optimization paradigm from *model-centric* to *data-centric* compression

Background: token overhead across various domains.

Context Length in LLMs

- From 2,048 tokens of Llama to 10M tokens in Llama 4 Scout.
- Long CoT reasoning models (e.g., Qwen3 and Deepseek-R1).
- Multi-agent collaboration systems (e.g., MetaGPT)

Higher Resolution and Longer Video for LVLMs

- From 224*224 of LLaVA to 4K high-resolution of InternVL3.
- Long video understanding (e.g., LongVILA and Video-XL).
- Multi-modal large reasoning models (e.g., QVQ).

More Complex Content for DiTs

- From 512*512 of Stable Diffusion to 4K high-resolution of PixArt-Σ.
- Long video generation (e.g., Sora and HunyuanVideo).

Background: model efficiency from different perspectives.

Efficient Architecture

Transformer Linear Attention SSM (RWKV, Mamba) Mixture-of-Experts Speculative Sampling DDIM (Diffusion Models)

► F(W; X)

Model-centric Compression

Network Pruning Model Quantization Knowledge Distillation Low Rank Decomposition

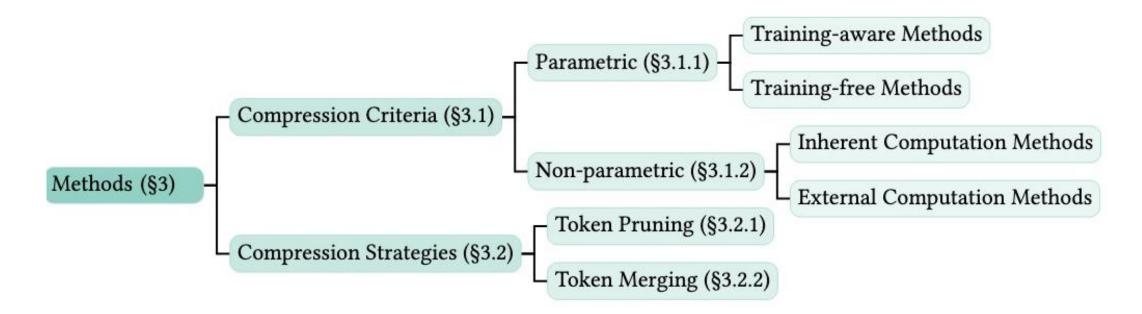
. . .

Data-centric Compression

Token Compression KV Cache Compression Dataset Distillation

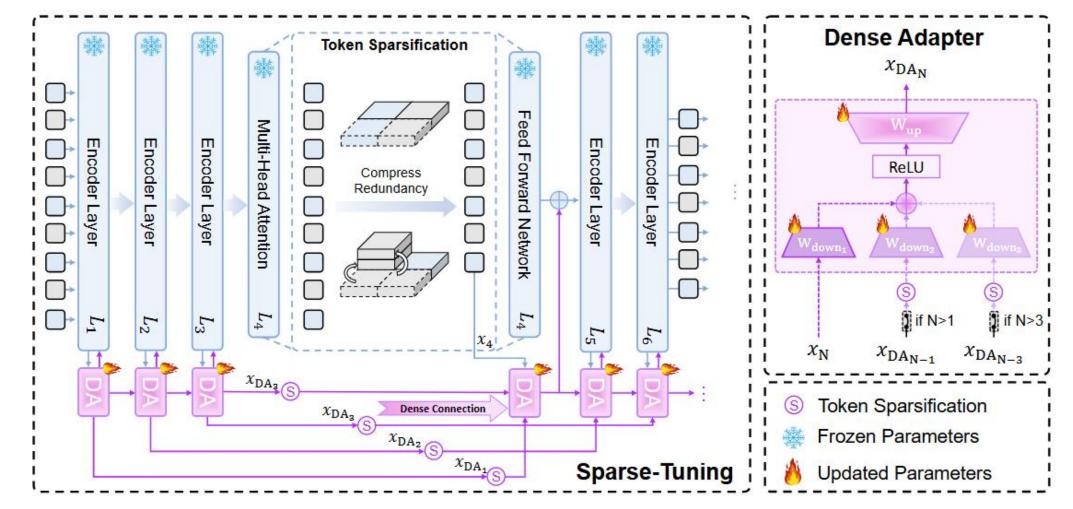
. . .

Methodology: how token compression works?



Most token compression methods fundamentally operate through **a two-stage process**: first, identifying tokens eligible for compression within the existing token sequence $X = [x_1, x_2, ..., x]$ using carefully designed *compression criteria* through a scoring function \mathscr{E} : $X \rightarrow \{s\} =1^T$, and then determining the precise handling of these tokens through the specific *compression strategies* \mathscr{P} (X, $\{s\} =1^T$) $\rightarrow X'$ that transform the original sequence into a compressed one where |X'| < |X|. Given that existing research primarily revolves around these two key components.

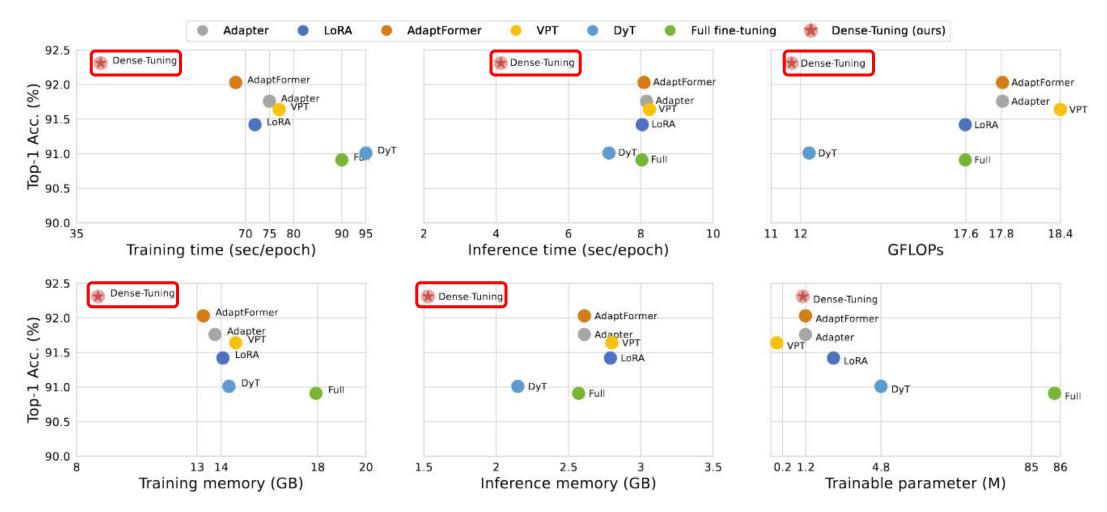
Token Compression in ViTs: Dense-Tuning.



Freezing the pre-trained ViT and update the DAs to efficiently fine-tune thepre-trained ViT.

Ting Liu*, Xuyang Liu*, Siteng Huang, Liangtao Shi, Zunnan Xu, Yi Xin, Quanjun Yin, "Dense-Tuning: Densely Adapting Vision Transformers with Efficient Fine-tuning and Inference". arXiv preprint arXiv:2405.14700.

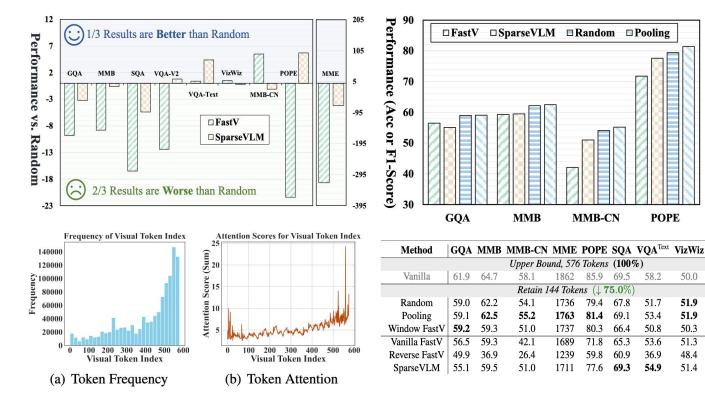
Token Compression in ViTs: Dense-Tuning.

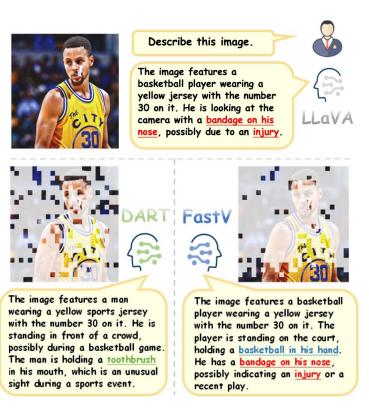


Dense-Tuning effectively adapts the pre-trained ViT with efficient fine-tuning and inference!

Ting Liu*, Xuyang Liu*, Siteng Huang, Liangtao Shi, Zunnan Xu, Yi Xin, Quanjun Yin, "Dense-Tuning: Densely Adapting Vision Transformers with Efficient Fine-tuning and Inference". arXiv preprint arXiv:2405.14700.

Token Compression in LVLMs: DART.





Limitations of Existing Methods:

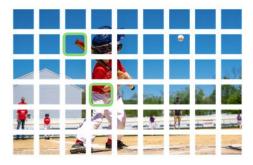
(I) Ignoring interactions between tokens during pruning;(III) Bias in token positions;

(II) Incompatibility to efficient attention(IV) Significant accuracy drop

Zichen Wen, Yifeng Gao, Shaobo Wang, Weijia Li, Conghui He, Linfeng Zhang, et al. "Stop looking for important tokens in multimodal language models: Duplication matters more." arXiv preprint arXiv:2502.11494 (2025). Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, Linfeng Zhang, "Token Pruning in Multimodal Large Language Models: Are We Solving

the Right Problem?". In Findings of the Association for Computational Linguistics (ACL), 2025.

Token Compression in LVLMs: DART.

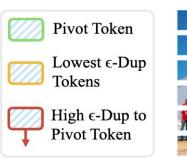


(a) Pivot Token Selection

55.8

10

#Pivot Token



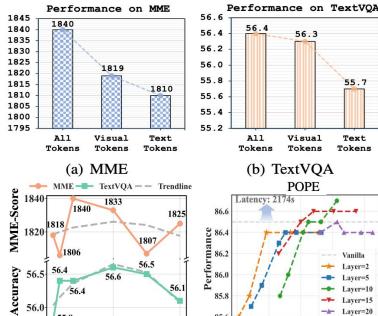
-- Layer=20

1800

2000

(b) Calculate ϵ -Duplicate Score Between Pivot Tokens and the Remainder

(c) Token Reduction to Keep Tokens With Least Duplication



20

85.6

1200

1400

1600

Latency (seconds)

Benchmark	Vanilla		Other Methods							
Deneninai k		Random	A-Score*	A-Score [♡]	K-norm [*]	K-norm [♡]	V-norm ⁴	V-norm [♡]	SparseVLM	FastV
GQA	61.9	$59.0_{\pm 0.3}$	59.2	58.4	58.7	59.1	57.3	59.4	56.0	49.6
MMB	64.7	$63.2_{\pm 0.7}$	63.1	62.9	63.2	64.0	62.5	64.3	60.0	56.1
MME	1862	$1772_{\pm 17.9}$	1826	1830	1840	1820	1760	1825	1745	1490
POPE	85.9	$80.6_{\pm 0.49}$	81.1	81.0	80.1	80.2	76.8	81.6	80.5	59.6
SQA	69.5	$69.0_{\pm 0.3}$	69.9	68.9	69.1	68.7	69.2	68.9	68.5	60.2
VQA ^{V2}	78.5	$75.2_{\pm 0.2}$	75.9	76.0	75.9	75.6	75.4	76.1	73.8	61.8
VQA ^{Text}	58.2	$56.0_{\pm 0.3}$	55.7	56.5	56.4	55.4	55.5	56.0	54.9	50.6
Avg.	100%	96.0%	96.9%	96.7%	96.8%	96.8%	94.9%	97.2%	93.9%	81.5%

- **Beyond Token Importance**: Rethinking Reduction through Token Duplication.
- **Diverse Pivot Token Selection:** Towards More **Robust Methods!**

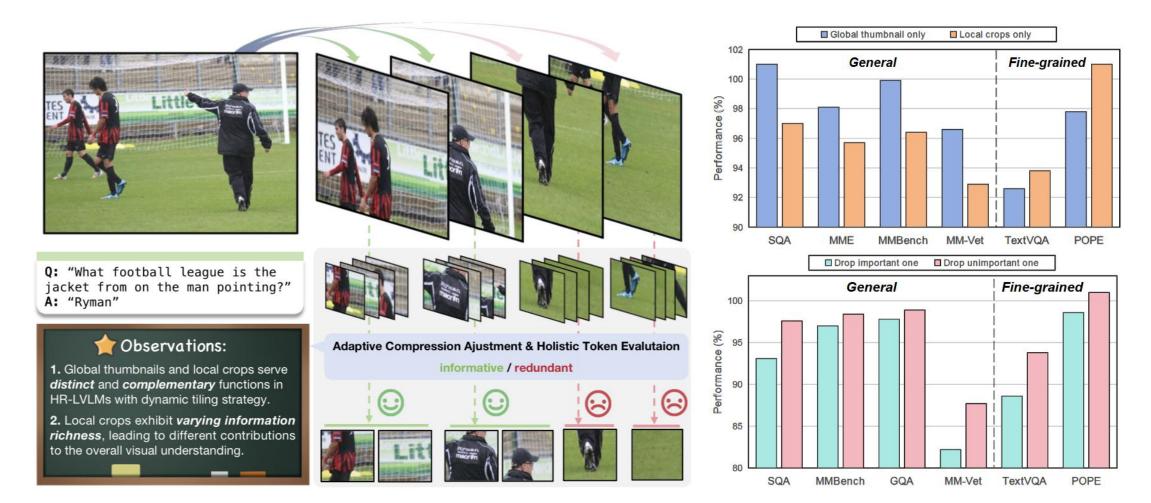
Zichen Wen, Yifeng Gao, Shaobo Wang, Weijia Li, Conghui He, Linfeng Zhang, et al. "Stop looking for important tokens in multimodal language models: Duplication matters more." arXiv preprint arXiv:2502.11494 (2025).

Token Compression in LVLMs: DART.

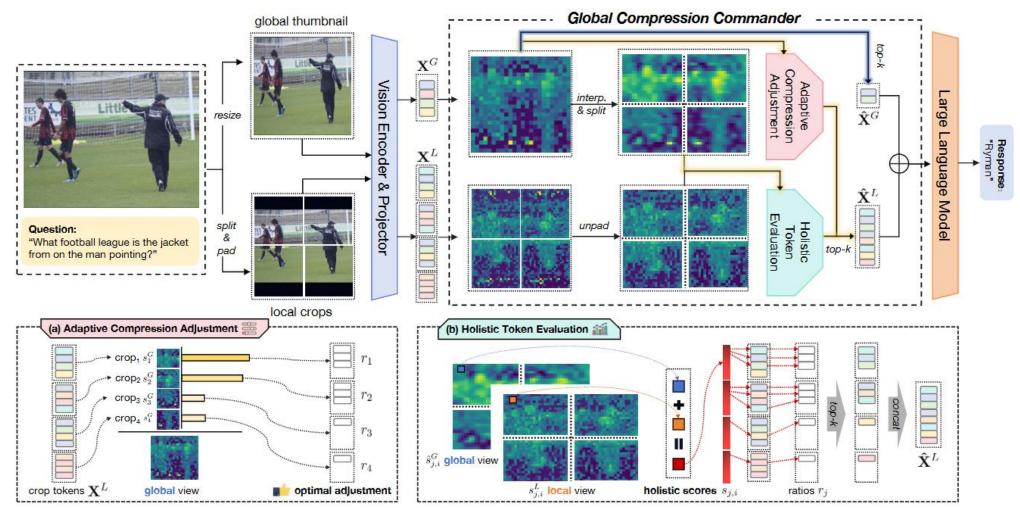
Method	GOA	MMB	MMB-CN	MME	POPE	SOA	VOA ^{V2}	VQA ^{Text}	VizWiz	OCRBench	Avg.		Tokens ↓	Total Time	Prefilling Time		KV Cache	POPE ↑	Spe	edup ↑
LLaVA-1.5-7B				1	Upper Bo	ound. 57	6 Tokens	(100%)		o crib think	8-	wiethods	Tokens \downarrow	(Min:Sec)	(Min:Sec)	⁺ FLOPS↓	(MB)	(F1-Score) (Total)	(Prefilling)
Vanilla	61.9	64.7	58.1	1862	85.9	69.5	78.5	58.2	50.0	297	100.0%		0000	06.16	22.51	1000	1610.1	065	1.00	1.00
LLaVA-1.5-7B					Retain	192 Tok	ens (↓ 6	6.7%)			2001070	Vanilla LLaVA-Next-7B	2880	36:16	22:51	100%	1512.1	86.5	$1.00 \times$	1.00×
ToMe (ICLR23)	54.3	60.5	-	1563	72.4	65.2	68.0	52.1	-	- 1	-	+ FastV	320	18:17	7:41	12.8%	168.0	78.3	$1.98 \times$	$2.97 \times$
FastV (ECCV24)	52.7	61.2	57.0	1612	64.8	67.3	67.1	52.5	50.8	291	91.2%	+ SparseVLM	320	23:11		15.6%	168.0	82.3	1.56×	-
HiRED (AAA125)	58.7	62.8	54.7	1737	82.8	68.4	74.9	47.4	50.1	190	91.5%	+ DART	320	18:13	7:38	12.8%	168.0	84.1	1.99 ×	2.99 ×
FitPrune (AAA125)	60.4	63.3	56.4	1831	83.4	67.8	-	57.4	50.9	-	-									
LLaVA-PruMerge (2024.05)	54.3	59.6	52.9	1632	71.3	67.9	70.6	54.3	50.1	253	90.8%									
SparseVLM (ICML25)	57.6	62.5	53.7	1721	83.6	69.1	75.6	56.1	50.5	292	96.3%		Latency:	21744 1050		Latency	1.551c		1	atonev: 1258c
PDrop (CVPR25)	57.1	63.2	56.8	1766	82.3	68.8	75.1	56.1	51.1	290	96.7%	86	- Latency.	2174s 1850	. * 7. · · ·	===		**	-*	atency: 1258s
FiCoCo-V (2024.11)	58.5	62.3	55.3	1732	82.5	67.8	74.4	55.7	51.0	-	96.1%	85	The second	×	00.	X	65	0		++
MustDrop (2024.11)	58.2	62.3	55.8	1787	82.6	69.2	76.0	56.5	51.4	289	97.2%	0		2 1800	*		ee 📑			
DART (Ours)	60.0	63.6	57.0	1856	82.8	69.8	76.7	57.4	51.2	296	98.8%	2 84	10	a) 1800		Ĭ,		Sec. Sec.	1	
DART [†] (Ours)	60.9	66.3	59.5	1829	85.3	70.1	78.2	56.8	51.3	304	100.4%	83 Vanilla		E 1750	Vanilla	4	00 man	Vanilla		-
LLaVA-1.5-7B					Retain	128 Tok	ens (↓7	7.8%)				5 82 - Random	N Q		Random		1	Random	1	
ToMe (ICLR23)	52.4	53.3	-	1343	62.8	59.6	63.0	49.1	-	-	-	T Tranky	14	rfo	- FastV	2	91 55	FastV	ì	
FastV (ECCV24)	49.6	56.1	56.4	1490	59.6	60.2	61.8	50.6	51.3	285	86.4%	SparseVLM	11	a 1700	SparseVLM	i.	Per	- SparseV		
HiRED (AAAI25)	57.2	61.5	53.6	1710	79.8	68.1	73.4	46.1	51.3	191	90.2%	80 MustDrop	6		MustDrop		50	MustDro		
FitPrune (AAAI25)	58.5	62.7	56.2	1776	77.9	68.0	-	55.7	51.7	-	=	79 - Ours	1	1650	Ours		N	- Ours	P	N
LLaVA-PruMerge (2024.05)	53.3	58.1	51.7	1554	67.2	67.1	68.8	54.3	50.3	248	88.8%	is Ours		V			× .	o mo		•
SparseVLM (ICML25)	56.0	60.0	51.1	1696	80.5	67.1	73.8	54.9	51.4	280	93.8%	1700 1600 150	0 1400	1300 48	80 460 440 420 40		0 320 10	05 980 955		
PDrop (CVPR25)	56.0	61.1	56.6	1644	82.3	68.3	72.9	55.1	51.0	287	95.1%	Latency (se	conds)		Latency	(seconds)		Later	ıcy (secor	ıds)
FiCoCo-V (2024.11)	57.6	61.1	54.3	1711	82.2	68.3	73.1	55.6	49.4	-	94.9%									
MustDrop (2024.11)	56.9	61.1	55.2	1745	78.7	68.5	74.6	56.3	52.1	281	95.6%	(a) POP	РЕ		(b) M	IME		(c) N	MBen	ch
DART (Ours)	58.7	63.2	57.5	1840	80.1	69.1	75.9	56.4	51.7	296	98.0%									
DART [†] (Ours)	59.8	65.6	58.3	1849	84.4	70.7	77.5	56.4	52.6	299	99.9%						1/2	P4		1 2
LLaVA-1.5-7B							ens_(↓ 88					Method	GQA	MMB MMB	B-CN MME PO	PE SQA V	VQA^{V2} VQA		OCRBen	ch Avg.
ToMe (ICLR23)	48.6	43.7		1138	52.5	50.0	57.1	45.3	-	-	-	LLaVA-Next-7B	64.2	67.4 60	Upper		Tokens (1009		517	1 100 00
FastV (ECCV24)	46.1	48.0	52.7	1256	48.0	51.1	55.0	47.8	50.8	245	77.3%	Vanilla LLaVA-Next-7B	04.2	07.4 00		5.5 70.1 ain 320 Token	81.8 64.9	57.0	517	100.0%
HIRED (AAAI25)	54.6	60.2	51.4	1599	73.6	68.2	69.7	44.2	50.2	191	87.0%	FastV (ECCV24)	55.9	61.6 51			71.9 55.7	53.1	374	86.4%
FitPrune (AAA125)	52.3	58.5	49.7	1556	60.9	68.0	-	51.2	51.1	-	-	HiRED (AAAI25)	59.3	64.2 55			75.7 58.8		404	91.8%
LLaVA-PruMerge (2024.05)	51.9	55.3	49.1	1549	65.3	68.1	67.4	54.0	50.1	250	87.4%	LLaVA-PruMerge (2024.)		61.3 55			69.7 50.6		146	79.9%
SparseVLM (ICML25)	52.7	56.2	46.1	1505	75.1	62.2	68.2	51.8	50.1	180	84.6%	SparseVLM (ICML25)	56.1	60.6 54			71.5 58.4		270	85.9%
PDrop (CVPR25)	41.9	33.3	50.5	1092	55.9	68.6	69.2	45.9	50.7	250	78.1%	PDrop (CVPR25)	56.4	63.4 56			73.5 54.4		259	86.8%
FiCoCo-V (2024.11)	52.4	60.3	53.0	1591	76.0	68.1	71.3	53.6	49.8		91.5%	MustDrop (2024.11)	57.3	62.8 55			73.7 59.9		382	90.4%
MustDrop (2024.11) DART (Ours)	53.1 55.9	60.0 60.6	53.1 53.2	1612 1765	68.0 73.9	63.4 69.8	69.3 72.4	54.2 54.4	51.2 51.6	267 270	90.1% 93.7%	FasterVLM (2024.12)	56.9	61.6 53			74.0 56.5		401	89.8%
()										241.0000 0000		GlobalCom ² (2025.01)	57.1 61.7	61.8 53 65.3 58			76.7 57.2 79.1 58.7		375 406	90.3% 93.9%
DART [†] (Ours)	57.1	64.7	56.7	1823	79.3	71.1	74.6	54.7	52.1	286	97.2%	DART (Ours)	01./	65.3 58	.4 1/10 84	.1 08.4	79.1 38.1	56.1	400	93.9%

DART achieves state-of-the-art efficiency and performance across various models and benchmarks !

Zichen Wen, Yifeng Gao, Shaobo Wang, Weijia Li, Conghui He, Linfeng Zhang, et al. "Stop looking for important tokens in multimodal language models: Duplication matters more." arXiv preprint arXiv:2502.11494 (2025).



The complementary roles between thumbnails and tiles and the inherent characteristics among tiles.

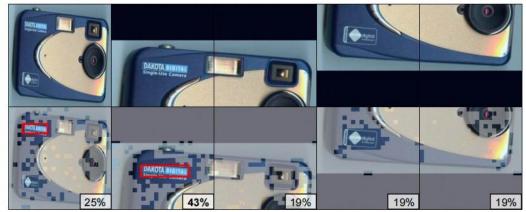


GlobalCom² adaptively compresses local tile tokens based on its semantic richness in global thumbnail.

Q1: "What football league is the jacket from on the man pointing?"
A1: "Ryman"

Q3: "What is the number of the runner in the lead right now?" A3: "57859"

Q2: "What is the brand of this camera?" A2: "DAKOTA DIGITAL"



Q4: "What time is on the clock?" **A4:** "**15:08:25**"

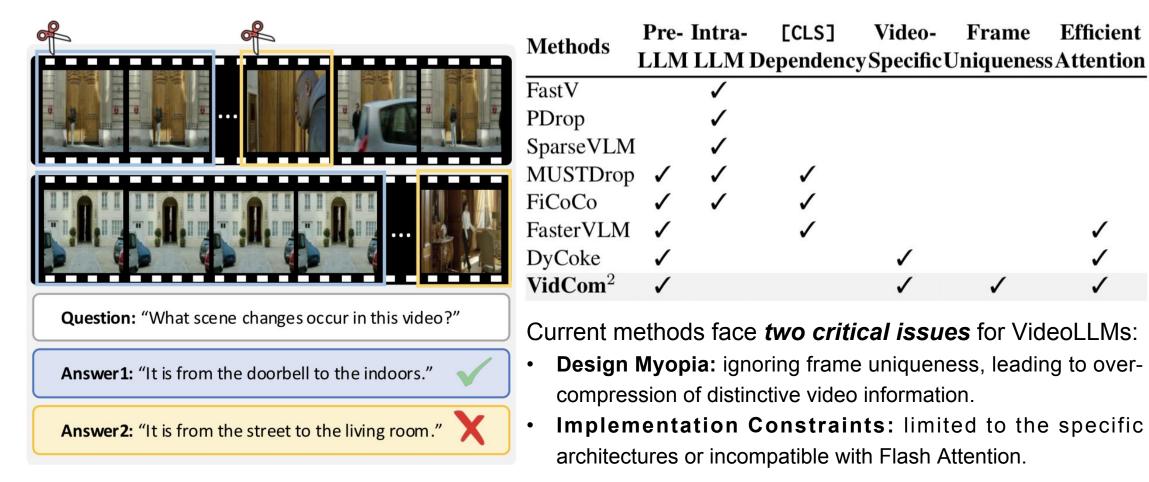


GlobalCom² adaptively compresses local tile tokens based on its semantic richness in global thumbnail.

Method	VQAv2	GQA	VizWiz	SQA	VQAT	POPE	MME	MMB	MMBCN	MM-Vet	Average
Upper Bound, 2880 Tok	ens										
LLaVA-NeXT-7B [29]	81.8	64.2	57.6	70.1	64.9	86.5	1519.0	67.4	60.6	43.9	100.0%
Ratio=75%, Retain up 1	to 2160 To	kens									
FastV [8]	81.1	62.5	55.1	69.3	59.7	86.3	1506.3	67.6	59.0	41.7	97.5%
SparseVLM [53]	81.1	62.6	55.2	68.5	60.3	73.2	1507.8	66.1	58.6	41.9	95.7%
FasterVLM [52]	81.1	63.7	56.5	68.4	59.1	87.5	1533.4	67.5	60.2	38.5	97.4%
GlobalCom ²	81.3	63.8	56.5	68.7	62.5	87.8	1548.4	68.0	60.6	40.6	98.8%
Ratio=50%, Retain up 1	to 1440 To	kens									
FastV [8]	80.7	61.8	54.9	69.1	59.6	85.5	1490.3	67.4	58.5	41.2	96.8%
SparseVLM [53]	80.9	62.0	55.7	68.1	60.0	73.4	1484.9	65.7	58.9	39.9	95.0%
FasterVLM [52]	80.6	63.4	56.4	69.1	58.9	87.7	1533.3	67.4	60.4	39.6	97.7%
GlobalCom ²	80.6	63.9	56.5	68.5	62.3	88.1	1552.9	67.6	60.5	40.4	98.6%
Ratio=25%, Retain up t	to 720 Tok	ens									
FastV [8]	78.9	60.4	54.2	69.8	58.4	83.1	1477.3	65.6	57.0	41.1	95.3%
SparseVLM [53]	78.9	60.9	55.6	67.5	58.1	71.0	1446.1	63.8	57.0	38.0	92.6%
FasterVLM [52]	78.3	61.3	55.4	67.1	58.8	87.2	1454.6	66.0	58.4	37.8	95.1%
GlobalCom ²	79.4	61.4	55.7	68.1	60.9	87.6	1493.5	65.9	58.0	40.7	96.6%
Ratio=10%, Retain up a	to 288 Tok	ens									
FastV [8]	71.9	55.9	53.1	69.3	55.7	71.7	1282.9	61.6	51.9	33.7	87.3%
SparseVLM [53]	71.6	56.1	53.2	68.6	52.0	63.2	1332.2	54.5	50.7	24.7	82.7%
FasterVLM [52]	74.0	56.9	52.6	66.5	56.5	83.6	1359.2	61.6	53.5	35.0	89.8%
GlobalCom ²	76.7	57.1	54.6	68.7	58.4	83.8	1365.5	61.8	53.4	36.4	91.5%

GlobalCom² achieves SoTA performance! With only 10% tokens, it achieves 91.5% performance!

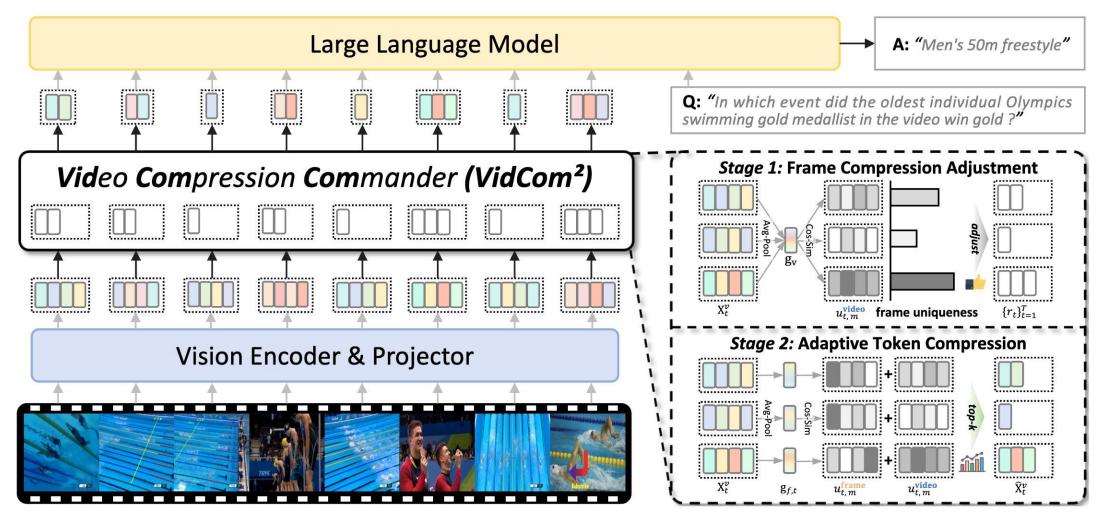
Token Compression in VideoLLMs: VidCom².



Takeaway: We derive *three key principles* for effective token compression of VideoLLMs: (i) model adaptability, (ii) frame uniqueness, and (iii) operator compatibility.

Xuyang Liu, Yiyu Wang, Junpeng Ma, Linfeng Zhang, "Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models". arXiv preprint arXiv:2505.14454.

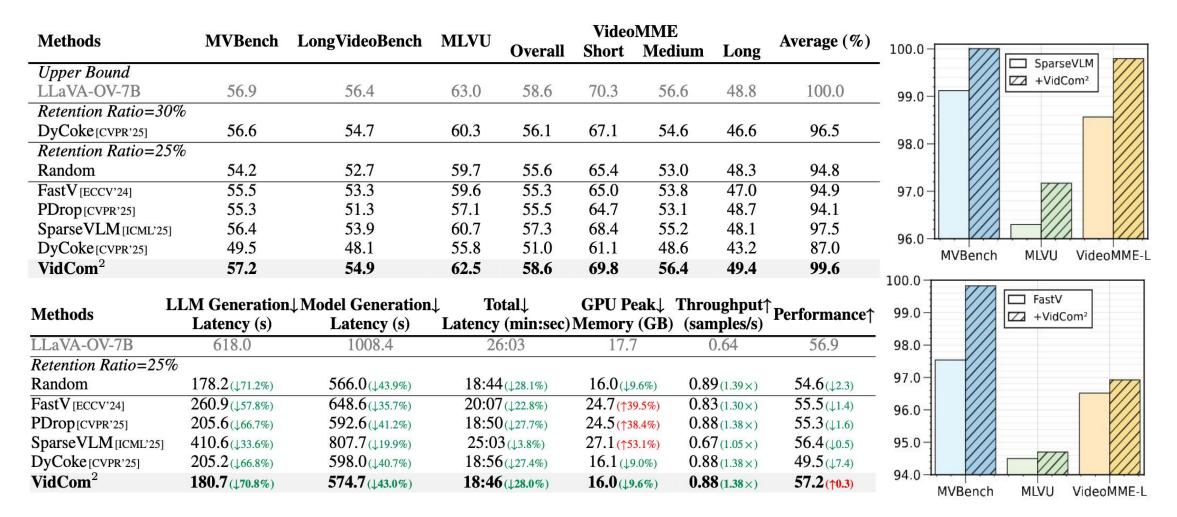
Token Compression in VideoLLMs: VidCom².



VidCom² dynamically compresses video tokens based on frame uniqueness.

Xuyang Liu*, Yiyu Wang*, Junpeng Ma, Linfeng Zhang, "Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models". arXiv preprint arXiv:2505.14454.

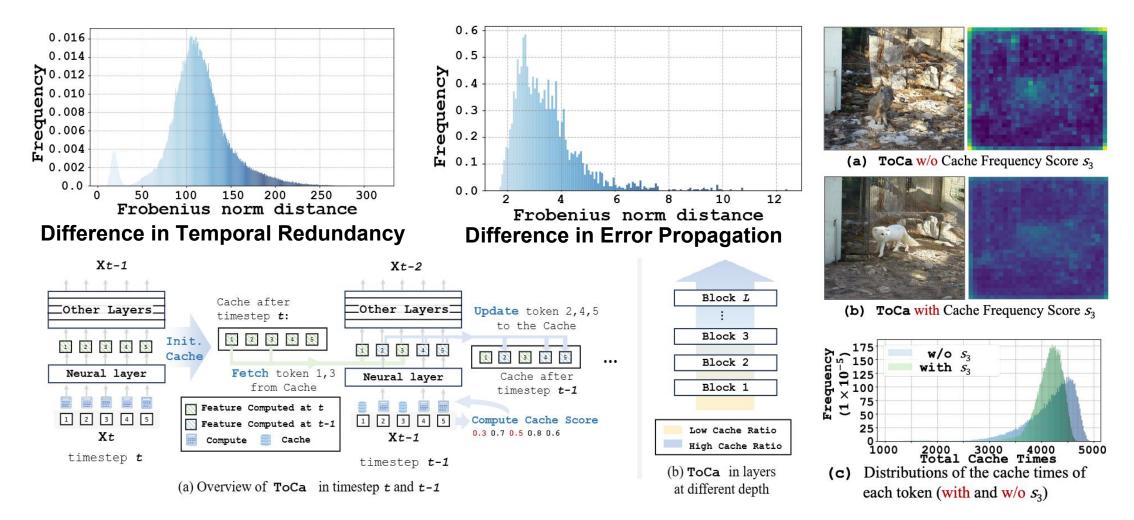
Token Compression in VideoLLMs: VidCom².



VidCom² achieves state-of-the-art efficiency and performance across models and benchmarks.

Xuyang Liu, Yiyu Wang, Junpeng Ma, Linfeng Zhang, "Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models". arXiv preprint arXiv:2505.14454.

Token Compression in DiTs: ToCa.



ToCa achieves fine-grained token-wise feature caching for DiT-based generation models.

Chang Zou^{*}, Xuyang Liu^{*}, Ting Liu, Siteng Huang, Linfeng Zhang, "Accelerating Diffusion Transformers with Token-wise Feature Caching". In *International Conference on Learning Representations (ICLR)*, 2025.

Token Compression in DiTs: ToCa.

Method	Latency(s) ↓	FLOPs 🗸	Speed ↑	MS-COC FID-30k↓				"an owl standing on a telephone	"a ceiling fan with
PixArt- α (Chen et al., 2024a)	0.682	11.18	$1.00 \times$	28.09	16.32	16.70		wire"	four white blades"
50% steps	0.391	5.59	$2.00 \times$	37.46	15.85	16.37		wire	1.53
FORA ($\mathcal{N} = 2$) (Selvaraju et al., 2024)	0.416	5.66	$1.98 \times$	29.67	16.40	17.19			
FORA($\mathcal{N} = 3$) (Selvaraju et al., 2024)	0.342	4.01	2.79×	29.88	16.42	17.15			
ToCa ($N = 3, R = 60\%$)	0.410	6.33	1.77×	28.02	16.45	17.15		386	
ToCa ($\mathcal{N} = 3, R = 70\%$)	0.390	5.78	1.93×	28.33	16.44	17.75	Onininal		
ToCa ($\mathcal{N} = 3, R = 80\%$)	0.370	5.05	2.21×	28.82	16.44	17.83	Original	(3.25)	0_00
ToCa ($\mathcal{N}=3, R=90\%$)	0.347	4.26	2.62×	29.73	16.45	17.82	x1.00		000
Method	Latency(s) ↓	, FL	OPs(T)↓	Speed	↑ V	Bench(%)↑		17A	
OpenSora (Zheng et al., 2024)	81.18	3	283.20	1.00>	<	79.13			
Δ -DiT [*] (Chen et al., 2024b)	79.14	3	166.47	1.04>	<	78.21			
T-GATE * (Zhang et al., 2024b)	67.98	2	818.40	1.16>	<	77.61			1
PAB ^{1*} (Zhao et al., 2024)	60.78	2	657.70	1.24>	<	78.51			
PAB ^{2*} (Zhao et al., 2024)	59.16	2	615.15	1.26>	<	77.64			
PAB ^{3*} (Zhao et al., 2024)	56.64	2	558.25	1.28>	<	76.95	ToCa		0,20
50% steps	42.72	1	641.60	2.00>	<	76.78	x1.53		00
FORA(Selvaraju et al., 2024)	49.26	1	751.32	1.87>	<	76.91		W/A	
ToCa(R = 80%)	43.52	1	439.70	2.28>	<	78.59			
ToCa(R = 85%)	43.08		394.03	2.36>		78.34			

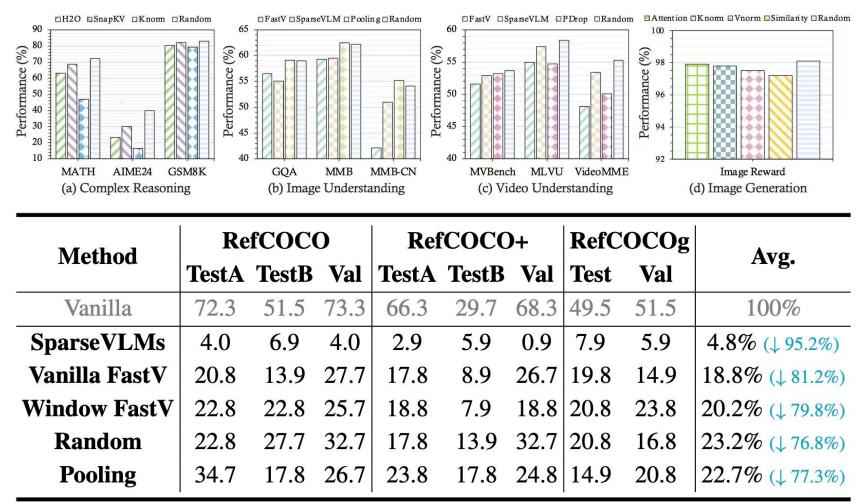
ToCa achieves nearly lossless speedups of $1.51 \times , 1.93 \times ,$ and $2.36 \times ,$ and $2.75 \times$ on FLUX, PixArt- α , OpenSora, and DiT-XL models respectively, while maintaining generation quality.

Chang Zou^{*}, Xuyang Liu^{*}, Ting Liu, Siteng Huang, Linfeng Zhang, "Accelerating Diffusion Transformers with Token-wise Feature Caching". In *International Conference on Learning Representations (ICLR)*, 2025.

Compelling Advantages of Token Compression:

- Universal Applicability: The redundancy of tokens exists consistently across modalities and tasks, making token compression possible in all kinds of settings.
- **Dual-phase Efficiency:** Token compression is capable of accelerating both model training and inference phases with minimal accuracy loss.
- Architectural Compatibility: Token compression is orthogonal to existing model compression methods, making it possible to be integrated seamlessly with them. Besides, it is friendly to hardware and computer systems.
- Low Implementation Costs: Modern neural networks, such as transformers, are able to process tokens of different lengths. As a result, token compression can be done without introducing any training costs or changes to data utilization.
- **Quadratic Gains:** The O(n²) computation complexity of widely used selfattention indicates that token compression can bring significant benefits in computation efficiency.

Current Challenges: performance degradation.



Performance degradation is largely affected by methodological bottlenecks and inherent limitations.

Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, Linfeng Zhang, "Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem?". In *Findings of the Association for Computational Linguistics (ACL)*, 2025. 22

Current Challenges: fair comparison.

Methods		eneration↓M ency (s)				Total↓ cy (min:sec)		J Peak↓ ory (GB)	Throughput↑ (samples/s)	Performance ↑
LLaVA-OV-7B	-OV-7B 618.0		1008.4			26:03		17.7	0.64	56.9
Retention Ratio=2	25%									2-
Random	178.	2(171.2%)	566.0	(↓43.9%)	18:	44(128.1%)	16.	0(19.6%)	0.89(1.39×)	54.6(12.3)
FastV [ECCV'24]	260.	9(157.8%)	648.6	(↓35.7%)	20:	07(122.8%)	24.	7 (†39.5%)	$0.83(1.30\times)$	55.5(11.4)
PDrop[CVPR'25]	$205.6(\downarrow 66.7\%)$		592.6(141.2%)		18:	18:50(\27.7%)		5(†38.4%)	0.88(1.38×)	55.3(11.6)
SparseVLM [ICML'2	410.	6(133.6%)	807.7	(↓19.9%)	25	:03(\13.8%)	27.	l (†53.1%)	$0.67(1.05 \times)$	56.4(10.5)
DyCoke[CVPR'25]		2(166.8%)	598.0	(↓40.7%)	18:	56(127.4%)	16.	1 (↓9.0%)	0.88(1.38×)	49.5 (17.4)
VidCom ²	180.	7(↓70.8%)	574.7	(43.0 %)	18:	46(128.0%)	16.	0(49.6%)	0.88 (1.38×)	57.2 _(↑0.3)
Method	TFLOPs↓	Peak Memory	(GB)↓	KV-Cache (MB)↓	Prefill Time	(ms)↓	Through	put (samples/s)↑	Performance ↑
Upper Bound, 2880	Tokens									8
LLaVA-NeXT-7B	41.7	23.8		1536.0	<u>i</u>	170.7			2.5	1519.0
Ratio=75%, Retain u	p to 2160 To	okens		2012/01/02/02						
GlobalCom ²	30.4(127%)	17.8(125%))	1126.4(12	7%)	119.9(1309	%)		3.2(1.3×)	1548.4
Ratio=50%, Retain u	p to 1440 To	okens								
GlobalCom ²	19.7 (153%)	16.2(432%		755.0(15)	%)	74.5 (157%)		4.2(1.7×)	1552.9
Ratio=25%, Retain u	p to 720 Tol	kens								
GlobalCom ²	9.6(177%)	14.8(139%)	377.0(170	i%)	34.6(180%)		5.3 _(2.1×)	1493.5

We advocate for more efficiency metrics to present comprehensive efficiency analysis.

Zichen Wen, Yifeng Gao, Weijia Li, Conghui He, Linfeng Zhang, "Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem?". In *Findings of the Association for Computational Linguistics (ACL)*, 2025. 23

Paper Lists: 200+ token compression papers (maintained).

Awesome-Token-level-Mc	odel-Compression Public 🛇 Unpin 💿 Unwatch 3 -	양 Fork 4 - 大 Starred 115 -
양 main ▾ 양 2 Branches ♡ 0 T	Tags Q Go to file t Add file - <> Code -	About දේ
당 xuyang-liu16 Update Understandi	ing.md 979f467 · last week 🕚 222 Commits	Collection of token-level model compression resources.
Audio&Speech Domain	Add files via upload 2 weeks ago	<i>∂</i> arxiv.org/abs/2505.19147
📄 Language Domain	Update token-reduction-in-language-domain.md 2 weeks ago	computer-vision model-compression
📄 Multi-modal Domain	Update Understanding.md last week	model-acceleration efficient-deep-learning token-pruning
Vision Domain	Update Generation.md 2 months ago	token-merging token-compression
images	Delete images/evolution.jpg last week	🛱 Readme
🗋 README.md	Update README.md last week	-∿ Activity ☆ 115 stars
	\mathscr{O} $:\equiv$	 ③ 3 watching 양 4 forks
	e Token-level Model Compression 🚀	Releases No releases published Create a new release

Thanks! Q & A